

Project co-financed by the European Regional Development Fund

Promoting innovative networks and clusters for marine renewable energy synergies in Mediterranean coasts and islands

Naples 27 November 2017

Gianmaria Sannino - Head of Climate Modelling and Impacts Laboratory @ ENEA gianmaria.sannino@enea.it

Global ocean energy

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion

• Waves: derived from the transfer of the kinetic energy of the wind to the upper surface of the ocean.

• **Tidal currents**: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

• Ocean Currents: derived from wind-driven and thermohaline ocean circulation.

Ocean Thermal Energy Conversion (OTEC): derived from temperature differences between solar energy stored as heat in upper ocean layers and colder seawater, generally below 1,000 m.

• Salinity Gradients (osmotic power): derived from salinity differences between fresh and ocean water at river mouths.

Global ocean energy

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion

Waves: derived from the transfer of the kinetic energy of the wind to the upper surface of the ocean.

Tidal Range (tidal rise and fall): derived from the gravitational forces of the Earth-Moon-Sun system.

Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

Ocean Thermal Energy Conversion (OTEC): derived from temperature differences between solar energy stored as heat in upper ocean layers and colder seawater, generally below 1,000 m.

Salinity Gradients (osmotic power): derived from salinity differences between fresh and ocean water at river mouths.

Wave energy is the largest untapped form of renewable energy in the world. It is on track to produce 10% (**500 GW**) of the global energy demand in the upcoming decades. The global installed capacity of wind and solar power at the end of 2014 was 360 GW and 150 GW respectively.

The estimates of global potential of **tidal energy** generation vary, but it is widely agreed that tidal stream energy capacity could exceed **120 GW** globally.

EU wave energy potential

ENEN

TABLE 1: REGIONAL THEORETICAL POTENTIAL OF WAVE ENERGY

REGION	Wave Energy TWh/yr				
Western and Northern Europe	2,800				
Mediterranean Sea and Atlantic Archipelagos (Azores, Cape Verde, Canaries)	1,300				
North America and Greenland	4,000				
Central America	1,500				
South America	4,600				
Africa	3,500				
Asia	6,200				
Australia, New Zealand and Pacific Islands	5,600				
TOTAL	29,500				

Mediterranean Wave energy potential

Distribution of average power per unit crest in the Mediterranean between 2001 and 2010.

$$J = \frac{\rho g^2}{64\pi} T_e H_s^2$$

Liberti, Carillo and Sanino, RE 2009

Mediterranean Wave energy potential

Distribution of average wave power flux per unit crest on western Sardinia and Sicilian coastline. Values are calculated on a line located 12 km off the coast.

Large storm December 2013 – Jannuary2014

EU tidal energy potential

Source: Aqua-RET (2012)

Tides in the Mediterranean Sea

Tides in the Strait of Gibraltar

salinity along-strait section

Tides in the Strait of Gibraltar

Sannino et AGU-BOOK 2014 Lafuente et al. JMS 2013 Garrido et al. JGR 2011

Interface depth evolution

Tides in the Strait of Messina

Mediterranean and strait models

MADE IN EU

Ocean Energy brings a new industrial sector to Europe

Europe needs new industrial success stories, and ocean energy can be a big one.

Building an ocean energy industry means creating 100GW worth of economic activity by 2050 for a supply chain firmly rooted in Europe

Ocean Energy can create 400.000 jobs in the EU by 2050

ENEN

Ocean Energy turns European technology leadership into export market dominance

European companies are the clear global leaders in ocean energy. They are in prime position to capture a global market estimated to be worth €53bn annually in 2050¹.

Ocean Energy

helps secure Europe's energy supply and reduce its €400bn fossil fuel import bill

Ocean energy production offers a solution for Europe's overreliance on fossil fuel imports, by providing an indigenous, secure source of energy.

FOSSII FUE FOSSIL FUEL ×

> The EU spends more than €1bn per day on fossil fuel imports, €400bn annually¹

¹ Source: European Commission

Ocean Energy is predictable and works well with other renewables

Ocean energy works well with other forms of renewable energy generation, such as wind and solar, by generating electricity at different time periods.

> Ocean Energy can help stabilise an electricity grid based on increasing amounts of variable renewables

Ocean Energy provides energy independence for coastal areas

Providing islands and remote coastal areas with their own source of competitive energy replaces expensive diesel-powered generators.

> Ocean energy can quickly become a competitive source of energy in these markets

Ocean Energy enjoys high public support

energy in their energy mix: A 2016 UK Government survey showed that 77% of people support ocean energy development¹

EU Commission Recommendation

Technology convergence needed

The Plan recommends to concentrate efforts on a **limited number of promising technologies** for energy conversion from tidal streams and waves, targeting a reduction in the LCoE for tidal stream energy converters to at least **15 ct€/kWh by 2025** and **10 ct€/kWh by 2030**, and a similar, although slower, reduction in the LCoE for wave energy converters to **20 ct€/kWh by 2025**, 15 ct€/kWh by 2030 and **10 ct€/kWh by 2035**.

EUROPEAN COMMISSION

BlueEne Med Cluster

University of Zagreb Faculty of Mechanical Engineering and Naval Architecture

Promoting innovative nEtworks and cLusters for mArine renewable energy synerGies in mediterranean cOasts and iSlands

To increase transnational activity of innovative clusters and networks of key sectors of the MED area

of Eastern Mediterranean

PELACOS aims to develop smart and sustainable growth by enhancing a transnational MED Cluster in the Blue Energy sector and by facilitating the distribution of targeted solutions and products specifically calibrated for the Mediterranean region.

PELAGOS offers support to the relevant stakeholders by promoting knowledge sharing in R&D, and by enhancing social acceptance. It inter-connects technology and service providers, large enterprises, power distributors, financial operators, policy makers, administrative bodies, NGOs, and citizens.

Regional Development Fund

			- Projec	t partners	-			
CRES Santar Conferences Every boson and Santa	ENEA Tattas National Agency for New Pechnologies Development Reserves Connerse Development	UA)E Linteenty stringere	CTN Marine Technology Carrier	LINGONCAMERE VENETO Annualizione of Diversion of Conversion of Network Program	HCMR Induce Centre for Maline Desarch	MARINEM, Materia Indianal Tanan Materiana	PMM Rije Mar Madaanandia	Univers of Zapr
(0000)	anti.	#	(03)	(m)	1000	(00)	2441	900
				ŀ	Home Page http://interreg-med.eu/PELAGOS			
Interreg 🔘			Email pelagos.med@gmail.com					
Me	diterrane	an	Differences Control	0	PELACOS	wtour / facebook 2016/Pelago	s interregm	ed
	P	ELA	GOS	Pro	alect co-fi	nanced by t	he Europe	

Home Page http://interreg-med.eu/PELAGOS

E-mail pelagos.med@gmail.com

Twitter / facebook @PELAGOS2016/Pelagos Interregmed

Italian R&D activities: Position paper published

ENEN

Edited by

G. Sannino and G. Pisacane, ENEA

Edited by

G. Sannino and G. Pisacane, ENEA

Contributors:

R. Archetti (UNIBO - DICAM), F. Arena (Uni. Mediterranea RC - NOEL), S. Barberis (RINA Consulting SpA), D. Borello (Uni. Sapienza), L. Cappietti (UNIFI), A. Carillo (ENEA), L. Castellini (Umbra Group SpA), M. Cippitelli (GENERMA SrI), D. Coiro (UNINA, SEAPOWER Scarl), G. De Santis (Enel Green Power SpA), M. Fontana (Università di Trento), A. Giacomi (Enel Green Power SpA), A. Gulisano (Wave for Energy SrI), R. M. Iannolo (Wavenergy.it SrI), M. Keber (Fincantieri Oli & Gas), F. Lagasco (RINA Consulting SpA), T. Lamberti (H2Boat Scarl), M. Marcelli (Università della Tuscia – LOSEM), G. Mattiazzo (POLITO), G. Passoni (POLIMI), M. Pe-viani (RSE - Research on Energy Systems), A. Romolo (Uni. Mediterranea RC - NOEL), F. Salvatore (CNR), S. Scanu (Università della Tuscia – LOSEM), M. V. Struglia (ENEA), A. Traverso (UNIGE– DIME), R. Vertechy (UNIBO), D. Vicinanza (Uni, Campania)

2017 ENEA - National Agency for New Technologies, Energy and Sustainable Economic Development ISBN: 978-88-8286-355-5

Project co-financed by the European Regional Development Fund

Gianmaria Sannino gianmaria.sannino@enea.it

Home Page http://interreg-med.eu/PELAGOS

E-mail

pelagos.med@gmail.com

Twitter / facebook @PELACOS2016/Pelagos Interregmed

