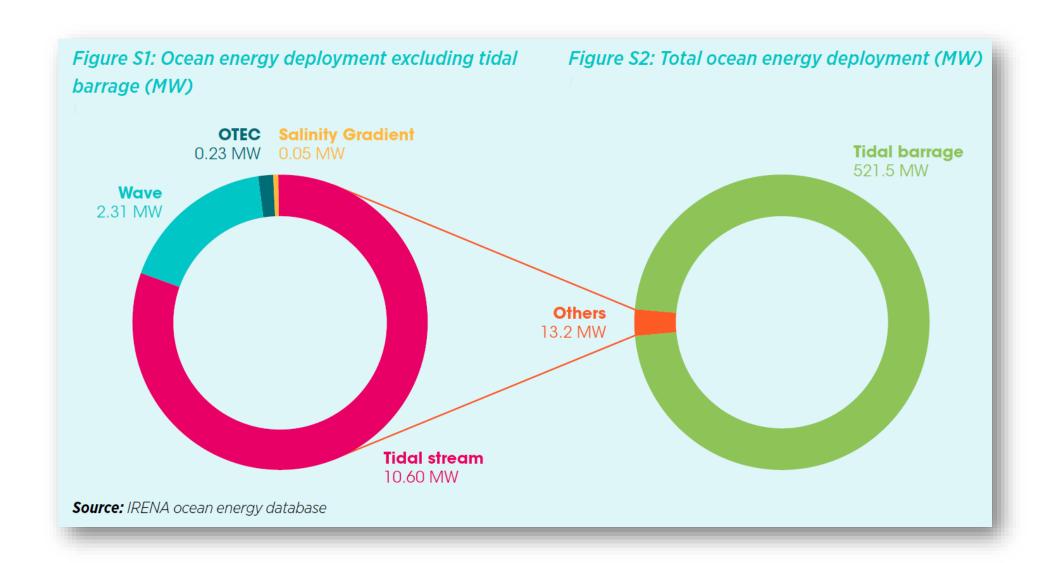


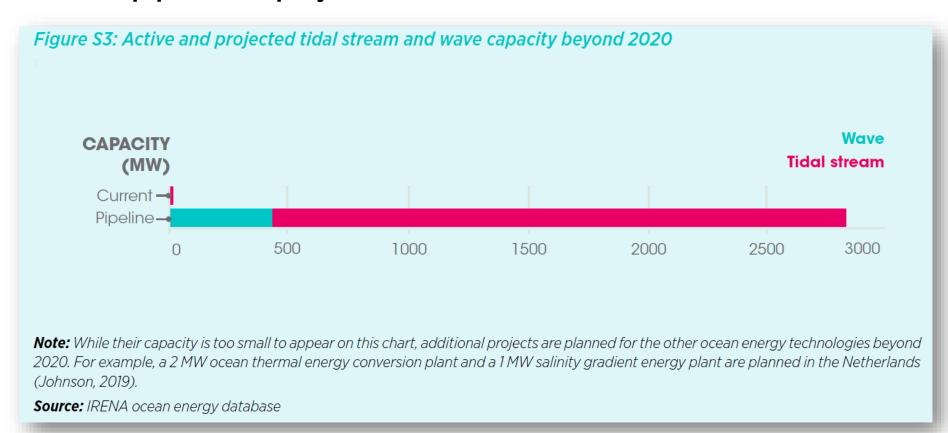
Ocean Energy Fostering a Blue Economy


Dr. Roland Roesch

Deputy Director, IRENA Innovation and Technology Center (IITC)

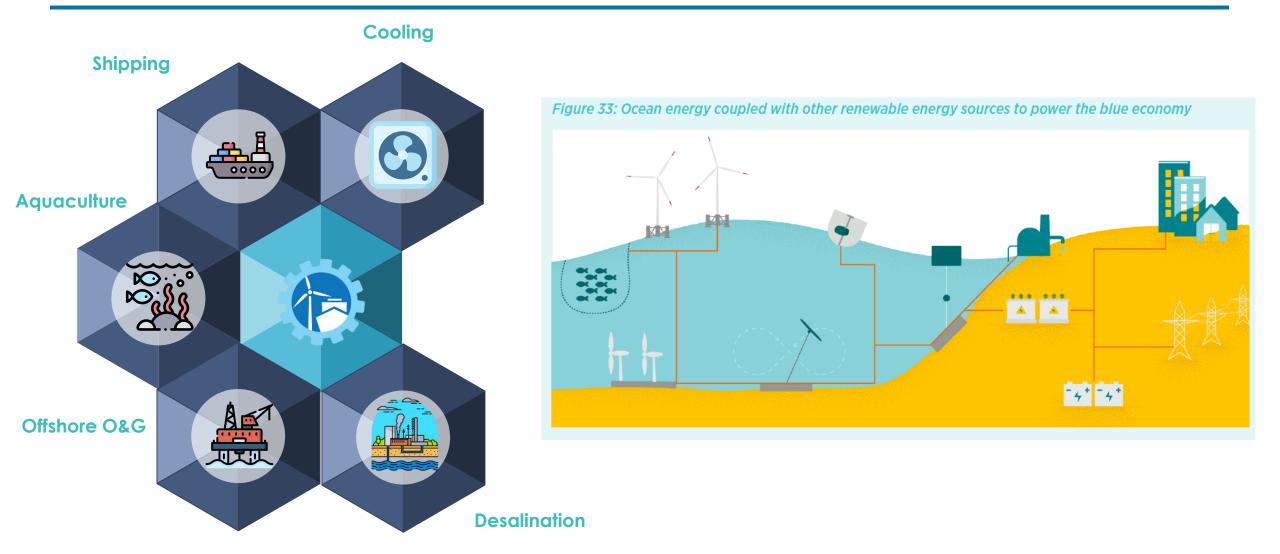
"Marine Renewable Energies – Fast-Advancing Technologies and Promising Oportunities" 16. November 2021

Status Ocean Energy markets



Outlook Ocean Energy markets

Current pipeline of projects



Market outlook

- 2030 10 GW
- 2050 100 GW

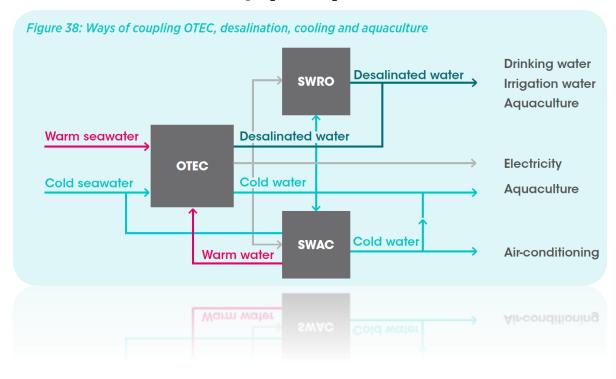
Innovative Business Model 1: Offshore renewables powering a Blue Economy

Examples

Table 8: Examples of ocean energy developers focusing on pow	ering	the blue	есопоту
--	-------	----------	---------

	POWER	DESALINATION	COOLING (SWAC)	OIL AND GAS	AQUACULTURE	SHIPPING/PORTS	AUV CHARGING	Developer
Wave								SINN Power
								AWS Ocean Energy
								WavEC
	1				1			Albatern
								Aqua Power Technologies
								GIEC
								Japanese Consortium
Tidal	1				1			Sustainable Marine Energy
Wave	1			1	1			Ocean Harvesting
Wave								Wave for Energy
	1			1				Hann-Ocean
								Floating Power Plant
Wave	1			1			1	Ocean Power Technologies
Wave								Resolute Marine Energy
	,	,						Carnegie Clean Energy
	~	*						Wavepiston
								GIEC
Wave		./						Atmocean
		~						NRELUS National Renewable Energy Laboratory

	POWER	DESALINATION	COOLING (SWAC)	OIL AND GAS	AQUACULTURE	SHIPPING/PORTS	AUV CHARGING	Developer			
Tidal	1					/		EMEC (through hydrogen)			
OTEC	1	1						NIOTOWC			
OTEC	1		1					Makai			
OTEC	,	,	, ,			Bardot Ocean					
	~	~	~					Bluerise			
OTEC	1	1	/		1		Bretagne Ocean Power				
Other						1		GEPS Techno			


Note: SWAC = seawater air conditioning; AUV = autonomous underwater vehicle

Source: IRENA ocean energy database

Example 1 - OTEC coupled with cooling and water desalination in islands

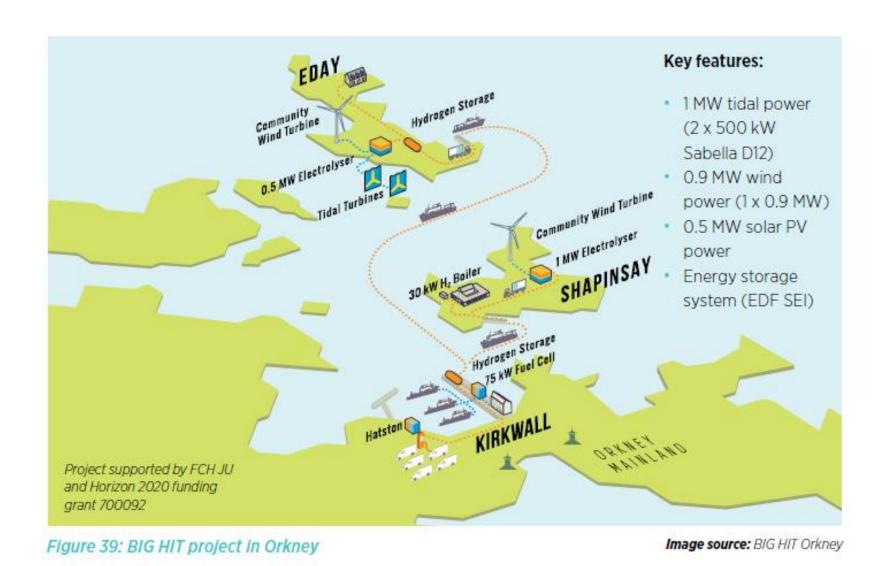
OTEC: electricity (kWh) + other revenues

OTEC technical potential in the Caribbean

	M	Maximum Technically Exploitable Resource (MW)									
Country	Fixed offshore wind	Floating offshore wind – conventional	Floating offshore wind – deep sea	OTEC	Total	electrical demand (MW)					
Antigua & Barbuda	4 935	1477	11 718	100	18.230	38					
The Bahamas	10 955	6 321	16 723	220	34 219	220					
Barbados	0	112	7 063	140	7 315	104					
Grenada	2 618	476	7 196	110	10 400	25					
Jamaica	1211	1848	9709	180	12 948	498					
Saint Kitts & Nevis	399	196	9135	40	9 770	24					
Saint Lucia	105	224	4 025	90	4 444	46					
Saint Vincent & the Grenadines	3 227	385	3 017	70	6 699	17					
Trinidad & Tobago	16 597	12 460	4 963	50	34 070	1064					
Total	40 047	23 499	73 549	1000	138 095	2 0 3 6					

Innovative Business Model 2: Hybrid electricity generating systems

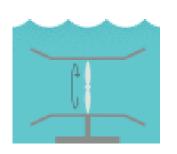
Table 7: Projects coupling	g ocean energy with	other renewable energy sources
----------------------------	---------------------	--------------------------------


	SOLAR	WIND	FLOATING WIND	PUMPED HYDRO	STORAGE	MICROGRID	HYDROGEN	Examples	Country	Status
Tidal		✓					✓	BIG HIT / Surf 'n' Turf	Scotland	In operation
Tidal					✓			Bluemull Sound Shetland	Scotland	In operation
Tidal	\checkmark				\checkmark			San Antonio	Philippines	Research
Tidal	✓	✓			✓	✓		PHARES Ushant Island	France	Planning
Tidal				✓				KIOST	Republic of Korea	R&D
Wave	\checkmark	\checkmark			\checkmark	\checkmark		King Island	Australia	Planning
Tidal					/	✓		KIOST	Republic of Korea	R&D
								Dent Island	Canada	Test completed
	\checkmark				\checkmark	\checkmark		Garden Island	Australia	Planning
Wave								KIOST	Republic of Korea	R&D
			✓					Canary Islands	Spain	Research
Wave								Bombora and MEECE	Wales	Research

	SOLAR	WIND	FLOATING WIND	PUMPED HYDRO	STORAGE	MICROGRID	HYDROGEN	Examples	Country	Status
Salinity							\checkmark	REDstack	Netherlands	Planning
								GEPS Techno		Full-scale testing
Wave	/							Eco Wave Power		Installed (Gibraltar and Israel)
wave	~							Wave for Energy		WEC full-scale testing completed
								GIEC		Open-sea testing completed
Wave	✓				✓			Ocean Power Technologies		Full-scale deployment announced
Wave	\checkmark	\checkmark						SINN Power		WEC prototype testing completed
			✓					Floating Power Plant		Previous model testing completed
Wave		/						Marine Power Systems		WEC 1:4 scale testing completed
								Seabased		WEC tested, wave-wind resource assessment conducted
								Havkraft		WEC full-scale testing completed
Wave					\checkmark			BOLT Lifesaver		Small-scale testing completed
Tidal					✓		✓	HydroWing (Tocardo Turbine)		Patenting

Note: WEC = wave energy converter Source: IRENA ocean energy database

Example 2: Tidal energy + solar PV & wind for green hydrogen production (floating wind explored)



Unlocking OE potential

Key Recommendations

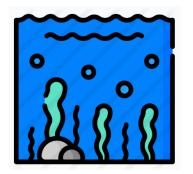
Technology:

Technology convergence and standardization

Conduct resource assessment campaigns

Support test centres

Capital grant funding for R&D


Policy:

Premium price MWh
Promote innovative business
models

Compensate additional services (regulation)

Innovative financial structures

Environmental and Social:

Improve access to baseline data Consult and engage the public

Infrastructure:

Availability of Networks

Engage and inform the emerging supply chain

Synergies with other RE technologies – firm generation

IRENA Collaborative Framework Ocean Energy & Offshore Renewables

Aim:

- Agency to proactively function as a global network hub
- Facilitate government peer-to-peer
 collaboration and exchange of knowledge

In brief:

- Collaborative Framework on Ocean Energy/Offshore
 Renewables covers:
 - Offshore and floating wind technology; ocean energy technologies; and Floating solar photovoltaic.
- Co-facilitated by the Kingdom of Tonga and Italy
- 40 member countries engaged at last two meetings + engagement from industry associations
- Suggested areas of work include exchange of good practices on: Marine spatial planning; Foster collaborative R&D programmes; Coupling of offshore renewables with power-to-X technologies; and Grid interconnection for offshore generation
- Next meeting after IRENA's Assembly 2022

Thank you

Contact us at <u>islands@irena.org</u>

www.irena.org

www.twitter.com/irena

www.facebook.com/irena.org

www.instagram.com/irenaimages

www.flickr.com/photos/irenaimages

www.youtube.com/user/irenaorg